Instructions for Use
CPR® Non-Surgical Ultrasonic Endodontic Instruments

Function and Uses:

CPR instruments have been designed to function on most brands of Piezo-Electric type dental ultrasonic Scalers that use an M3x0.6 thread. Refer to your ultrasonic machine owner’s manual for further details on the use of these types of devices. The operator should be aware that ultrasonic tips with small diameters are subject to breakage at any time. In order to reduce the incidence of premature breakage or failure, only a very light pressure should be applied by the operator, and the suggested intensity settings should be followed.

All CPR instruments incorporate a contra-angled shape allowing for improvement in procedural access for both anterior and posterior teeth. This is the same design found in virtually all dental instruments as well as ultrasonic tips for scaling and periodontal use. The following are guidelines for the various uses of CPR Instruments.

CPR-1 Intensity Setting – Medium to High: The CPR-1 can be used to safely remove a variety of posts retained with various cementing agents. The CPR-1 is activated and placed directly on the post and moved circumferentially around for approximately 10 minutes. If this does not loosen and free the post, then move to an alternate method. If using a post removal system or steiglitz pliers you may place the CPR-1 tip directly on device. This transfer vibration to the post that aids in the post loosening process. This process is called “indirect ultrasonics”. CAUTION! DO NOT PLACE THE CPR-1 DIRECTLY ON A CERAMIC CROWN OR BRIDGE. The CPR-1 should be placed 2-3mm above the metal margin to vibrate it loose. It may cause severe damage to the prosthesis if placed directly on ceramics.

CPR-2D Intensity Setting – Medium to High: The CPR-2 is an all-purpose, tapered instrument used primarily within the pulp chamber. The CPR-2 is used for eliminating pulp stones, removing dentin, trephine around obstructions within the pulp chamber and locating hidden orifices, such as MB2 systems. The CPR-2 can also be used to safely and efficiently remove restorative materials and amalgams, and is capable of eliminating materials extending below the orifice.

CPR-3D – CPR-5D Intensity Setting – Low: Due to their small cross-sectional diameters and lengths, the 3-5 tips must be used on very low power. It is not necessary to apply force to the instruments as the diamond coating will aggressively remove dentin and debris along the lateral sides of the tips.

CPR-6 – CPR-8 Intensity Setting – Low: The CPR 6, 7, and 8 ultrasonic instruments have a smaller cross-sectional diameter compared to the CPR3, 4, and 5. The instruments are made of titanium alloy, not NiTi. They will hold a bend if applied forcefully. The titanium alloy results in a smoother cutting action with less chatter, thereby increasing tactile sense. They are generally used in the mid and apical portion of the root with illumination and magnification. These instruments are end cutting only and are commonly used to ditch around broken files, aiding in their removal.

Instructions for Use
CPR® Non-Surgical Ultrasonic Endodontic Instruments

Function and Uses:

CPR instruments have been designed to function on most brands of Piezo-Electric type dental ultrasonic Scalers that use an M3x0.6 thread. Refer to your ultrasonic machine owner’s manual for further details on the use of these types of devices. The operator should be aware that ultrasonic tips with small diameters are subject to breakage at any time. In order to reduce the incidence of premature breakage or failure, only a very light pressure should be applied by the operator, and the suggested intensity settings should be followed.

All CPR instruments incorporate a contra-angled shape allowing for improvement in procedural access for both anterior and posterior teeth. This is the same design found in virtually all dental instruments as well as ultrasonic tips for scaling and periodontal use. The following are guidelines for the various uses of CPR Instruments.

CPR-1 Intensity Setting – Medium to High: The CPR-1 can be used to safely remove a variety of posts retained with various cementing agents. The CPR-1 is activated and placed directly on the post and moved circumferentially around for approximately 10 minutes. If this does not loosen and free the post, then move to an alternate method. If using a post removal system or steiglitz pliers you may place the CPR-1 tip directly on device. This transfers vibration to the post that aids in the post loosening process. This process is called “indirect ultrasonics”. CAUTION! DO NOT PLACE THE CPR-1 DIRECTLY ON A CERAMIC CROWN OR BRIDGE. The CPR-1 should be placed 2-3mm above the metal margin to vibrate it loose. It may cause severe damage to the prosthesis if placed directly on ceramics.

CPR-2D Intensity Setting – Medium to High: The CPR-2 is an all-purpose, tapered instrument used primarily within the pulp chamber. The CPR-2 is used for eliminating pulp stones, removing dentin, trephine around obstructions within the pulp chamber and locating hidden orifices, such as MB2 systems. The CPR-2 can also be used to safely and efficiently remove restorative materials and amalgams, and is capable of eliminating materials extending below the orifice.

CPR-3D – CPR-5D Intensity Setting – Low: Due to their small cross-sectional diameters and lengths, the 3-5 tips must be used on very low power. It is not necessary to apply force to the instruments as the diamond coating will aggressively remove dentin and debris along the lateral sides of the tips.

CPR’s 3, 4, and 5 are used in the coronal, middle and apical one-thirds of roots. Each instrument gets progressively smaller in the cross-sectional diameter and longer in overall length. The three sizes allow the clinician greater control as the instruments are selected according to safe access and depth of the procedure. Uses include: Trephine around posts, chasing calcified canals, eliminating brick-hard paste-type material, broken instrument removal, and other intra-canal obstructions.

CPR-6 – CPR-8 Intensity Setting – Low: The CPR 6, 7, and 8 ultrasonic instruments have a smaller cross-sectional diameter compared to the CPR3, 4, and 5. The instruments are made of titanium alloy, not NiTi. They will hold a bend if applied forcefully. The titanium alloy results in a smoother cutting action with less chatter, thereby increasing tactile sense. They are generally used in the mid and apical portion of the root with illumination and magnification. These instruments are end cutting only and are commonly used to ditch around broken files, aiding in their removal.
Sterilization Instructions – Ultrasonic Tips

CPR ultrasonic tips are not sold sterile and should be cleaned and sterilized prior to each use.

1. **Cleaning** – Pre-clean using a high-quality, pH neutral, ultrasonic cleaning solution. Follow solution manufacturer’s instructions. Dry thoroughly with a towel and compressed air.

2. **Steam Sterilization** – For long term tip storage, place the tips to be sterilized in the tip taxi then in an autoclave pouch prior to sterilization. The tips do not require an autoclave pouch if they are intended for immediate use and can be placed solely in the tip taxi for sterilization. Sterilize the handpiece according to the following parameters:

<table>
<thead>
<tr>
<th>Steam Sterilization Parameters for Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Sterilizer Type</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Cycle Time</td>
</tr>
<tr>
<td>Maximum Dry Time</td>
</tr>
</tbody>
</table>

Disclaimer: Obtura Spartan does not assume any responsibility or liability for incorrect diagnosis or failed procedures due to operator error or equipment malfunction. Clinicians who are not familiar with the techniques and uses of this product should attend courses and receive training on the subject prior to use. Warranty: Ultrasonic instruments are covered by a limited 90-day warranty and will be replaced or repaired at our option if returned, shipping prepaid, to the point of purchase. Warranty is void if used incorrectly, or on improper equipment.